Faculty of Electrical Engineering

B.E. Electrical and Electronics Engineering

(R 2021) Semester - V

MAJOR EQUIPMENT

Course Code: EE3512

Course Title: CONTROL AND INSTRUMENTATION LABORATORY

Subject incharge: N.Renukadevi

SI. No.	Description of Equipment	Required numbers (for batch of 30 students)	
1	Desktop	30 Nos.	
2	Mat Lab Latest Version	30 User	

SAFETY MEASURES

- General Rules of Conduct in Laboratories are displayed.
- Specific Safety Rules for students are displayed.
- Fire Extinguisher and First aid kit are regularly inspected and restocked as necessary.
- All electrical wires are protected by using MCB.
- · Well trained technical supporting staff.
- Periodical servicing of the lab equipments.
- Maintaining a clean and organized laboratory.

EE3512 CONTROL AND INSTRUMENTATION LABORATORY

LT P C 0 0 4 2

TOTAL: 60 PERIODS

COURSE OBJECTIVES:

- To make the students familiarize with various representations of systems.
- To make the students analyze the stability of linear systems in the time domain and frequency domain.
- To make the students design compensator based on the time and frequency domain Specifications.
- To develop linear models mainly state variable model and transfer function model
- To make the students to design a complete closed loop control system for the physical systems.

LIST OF EXPERIMENTS:

- 1. Analog (op amp based) simulation of linear differential equations.
- 2. Numerical Simulation of given nonlinear differential equations.
- 3. Real time simulation of differential equations.
- 4. Mathematical modeling and simulation of physical systems in at least two fields.
 - Mechanical
 - Electrical
 - Chemical process
- 5. System Identification through process reaction curve.
- 6. Stability analysis using Pole zero maps and Routh Hurwitz Criterion in simulation platform.
- 7. Root Locus based analysis in simulation platform.
- 8. Determination of transfer function of a physical system using frequency response and Bode's asymptotes.
- 9. Design of Lag, lead compensators and evaluation of closed loop performance.
- 10. Design of PID controllers and evaluation of closed loop performance.
- 11. Discretization of continuous system and effect of sampling.
- 12. Test of controllability and observability in continuous and discrete domain in simulation platform.
- 13. State feedback and state observer design and evaluation of closed loop performance.
- 14. Mini Project 1: Simulation of complete closed loop control systems including sensor and actuator dynamics.
- 15. Mini Project 2: Demonstration of a closed loop system in hardware.

COURSE OUTCOMES:

At the end of this course, the students will demonstrate the ability

- CO1: To model and analyze simple physical systems and simulate the performance in analog and digital platform.
- CO2: To design and implement simple controllers in standard forms.
- CO3: To design compensators based on time and frequency domain specifications.
- CO4: To design a complete closed control loop and evaluate its performance for simple physical systems.
- CO5: To analyze the stability of a physical system in both continuous and discrete domains.